Parcellaire d'épandage de Mr LE CAM Jean-Michel, sur les communes de BOURBRIAC et KERIEN. 50 m 15 19b 10 11 12 022000178 LE CAM Jean-Michel exclue zone non cultivee Objets du fond de carte 14a 13 -Talus boisé Zone U Puits Etang Parcelle boisée ZONES HUMIDES Echelle 1/5000ème

Identification :
Exploitant : LE CAM JEAN MICHEL

Lieu - dit : Crec'h Quenez Braz Commune : 22480 KERIEN

Commune	Parcelle culturale	Culture	Surface utiles (SAU en	Longueur de pente	% pente	Distance/eau	Eléments de protection existants	Classement du risque	Mesures compensatoires 1	Mesures compensatoires 2	Mesures compensatoires 3
BOURBRIAC	1	MAIS ENSILAGE	1,44	50 à 150	< à 2%	>100m	Talus	Risque faible	Maintien des éléments de protection existants		
KERIEN	2a	PRAIRIE NON PATUREE	1,68	<50	de 5 à 7%	de10 à 100 m	Talus	Risque faible	Maintien de la prairie	A conserver	
KERIEN	2b	PRAIRIE NON PATUREE	1,04					Risque faible	Maintien de la prairie	A conserver	
KERIEN	2c	AUTRE UTILISATION	0,16					Absence de risque			
KERIEN	2d	AUTRE UTILISATION	0,07					Absence de risque			
KERIEN	3	BLE	3,78	>150	de 5 à 7%	de10 à 100 m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants	Travail du sol perpendiculaire à la pente	
KERIEN	4a	BLE	8,04	50 à 150	de 2 à 5%	>100m	Talus discontinu	Risque faible	Maintien des éléments de protection existants		
KERIEN	4b	PRAIRIE NON PATUREE	0,21	50 à 150	de 2 à 5%	>100m	Talus discontinu	Risque faible	Maintien des éléments de protection existants		
KERIEN	5a	PRAIRIE NON PATUREE	0,61	<50	de 2 à 5%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	6	PRAIRIE NON PATUREE	0,18	<50	< à 2%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	7	PRAIRIE NON PATUREE	0,34	<50	< à 2%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	8a	MAIS ENSILAGE	2,94	>150	< à 2%	>100m	Talus	Risque faible	Maintien des éléments de protection existants		
KERIEN	8b	PRAIRIE NON PATUREE	0,57	<50	de 2 à 5%	>100m	Talus	Risque faible			
KERIEN	9	BLE	0,8	<50	de 5 à 7%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants	Travail du sot perpendiculaire à la pente	
KERIEN	10	BLE	1,82	50 à 150	de 5 à 7%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants	Travail du sol perpendiculaire à la pente	
KERIEN	11	BLE	0,74	<50	< à 2%	>100m	Aucune	Risque faible			
KERIEN	12	TRITICALE	3,29	>150	de 2 à 5%	>100m	Talus discontinu	Risque faible	Maintien des éléments de protection existants		
KERIEN	13	MAIS ENSILAGE	1,49	50 à 150	de 2 à 5%	>100m	Talus	Risque faible	Maintien des éléments de protection existants		
KERIEN	14a	ORGE	2,52	50 à 150	de 5 à 7%	>100m	Talus	Risque faible	Maintien des éléments de protection existants	Travail du sol perpendiculaire à la pente	
KERIEN	14b	BANDE ENHERBEE	1,03	<50	de 7 à 15%	>100m		Risque faible			
KERIEN	15	BLE	4,35	50 à 150	< à 2%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	16	BLE	2,8	50 à 150	< à 2%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	17	BLE	1,37	<50	< å 2%	>100m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	18	MAIS ENSILAGE	9,35	>150	de 2 à 5%	de10 à 100 m	Talus et zone boisée	Risque faible	Maintien des éléments de protection existants	Respect des distances d'épandage vis-à-vis des points d'eau	Travail du sol perpendiculaire à la pente
KERIEN	19a	MAIS ENSILAGE	1,49	50 à 150	< à 2%	>100m	Prairie, talus et zone boisée	Risque faible	Maintien des éléments de protection existants		
KERIEN	19b	MAIS ENSILAGE	1,13	50 à 150	< à 2%	>100m	Prairie	Risque faible	Maintien des éléments de protection existants		
KERIEN	19c	MAIS ENSILAGE	0,87	<50	< à 2%	>100m	Talus	Risque faible	Maintien des éléments de protection existants		

Tableau des mesures compensatoires vis à vis du risque de transfert du phosphore

Projet de valorisation des effluents d'élevage et de fertilisation des cultures

KERIEN Exploitation: LE CAM JEAN MICHEL

1) Azote et phosphore d'origine animale produits par le cheptel

					Azote (kg N	1)	Phos	sphore (kg F	P2O5)	
BOVINS	effectif	UGB	mois au	par	N	N	par	P2O5	P205	% lisier
(et autres herbivores)		fourrage	pâturage	animal	total	maîtrisable	animal	total	maîtrisable	N maît
										0
										0
										0
										0
										0
										0
										0
										0
										0
										0
										0
										0
Total	0	0,0	UGB.JPP		0	0		0	0	

						Azote (kg N)	Phos	phore (kg F	P2O5)	
ſ	VOLAILLES	type de	effectif	bandes	norme de	N	N	norme de	P205	P2O5	% lis
١		production		par an	rejet	total	maîtrisable	rejet	total	maîtrisable	
ı	Poulet lourd	Std	40000	5,5	0,039	8580	8580	0,026	5720	5720	0
ı						0	0		0	0	
ı						0	0		0	0	0
ŀ						0	0		0	0	0
L						8580	8580		5720	5720	

					Azote (kg N)	Phosphore (kg P2O5)			
PORCS	effectifs	type	type	par	N	N	par	P205	P2O5	N lisier
		aliment.	déjection	animal	total	maîtrisable	animal	total	maîtrisable	urine
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
				0,00	0	0	0,00	0	0	
			•		0	0		0	0	
		Total de	l'élevage		8580	8580		5720	5720	
		dont	herbivores a	au pâturage	0			0		
		doı	nt volailles s	ur parcours	0			0		

2) Quantités d'azote et phosphore maîtrisables après importation, exportation ou traitement

		Azote	(kg N)			Phosphore	(kg P2O5)		mode d'élimination	
Origine d'élevage	produit	réduit ou	+ import	Reste à	produit	réduit ou	+ import	Reste à	provenance	
type de produits		éliminé	- export	gérer		éliminé	- export	gérer	destination	
Fumier bovin	0		0	0	0		0	0		
Fumier volaille-4m	8580		-3220	5360	5720		-2147	3573		
Fumier porc - 6 mois	0		0	0	0		0	0		
Lisier bovin	0		0	0	0		0	0		
Lisier volaille-canard	0		0	0	0		0	0		
Lisier porc	0		0	0	0		0	0		
	0		0	0	0		0	0		
			0	0			0	0		
			0	0			0	0		
			0	0			0	0		
			0	0			0	0		
Total	8580	0	-3220	5360	5720	0	-2147	3573		

3) Produits fertilisants à épandre sur l'exploitation et teneur en azote moyenne

		Azote	N issu	Perte stock	reste à	Teneur*	Masse*	% N issu
Produits fertilisants	abréviation	kg N	d'élevage	prolongé	épandre	N/t	t	élevage
Fumier volaille-4m	Fu.vol-4	5360	5360		5360	25,0	214	100
		0	0		0			0
		0	0		0			0
		0	0		0			0
		0	0		0			0
		0	0		0			0
		5360	5360		5360	(* estir	nation)	

4) - Utilisation du foncier

.,				
Hors parcours	(ha)	SAU	SPE	Hors SPE
Cultures		48,2	47,0	1,3
Prairies non pâturées		4,6	3,4	1,3
Prairies pâturées				0,0
Autres		1,0		1,0
Total		53,9	50,3	3,5

Parcours (plein air)	(ha)	0.0	

Surface	recevant	des	dé	jectior	าร

	-	Azote	P2O5
Emis au pâturage	Total	0	0
	par ha	0,0	0,0

mis sur parcours			
Emis sur parcours	Total	0	0
	par ha	0.0	0,0

5a) Projet d'épandage et de fertilisation sur l'exploitation

Total N		152	86		130	152	100	152	1	7,0	2	40	2 5	04		0						0000	
Engrais minér.	ha ha																						
Engrais	e N/ha	100	2		130	100	100	100	1	1,0	2	40	70	5								2000	3
N/ha	efficace	23	98	3	0	25	0	52		> c	0	0	0	0		0							
Azote N/ha		1,7	150	3		115		115															5
	N/ha																						
	ı t/ha																					C	5
	N/ha																						
	a t/ha																					C	5
	a N/ha																						
dnes	ıa t/ha																					c	5
Fertilisants organiques	ıa N/ha	_																					
tilisants 	N/ha t/ha									+												c	5
Fer	t/ha N/																						
	N/ha t/i	7 7	150	3		115		115														200	
Fit vol.4			o (c			2		22															•
,	0)						+										+	+		+		0	-
Surfaces		0	18,0	2	2,5	2,5	(r)	2,7		9,0	0,0	4.5	- 0	5,1		1,0	+					6	7
U	10000	10	7 2	-	2	2	(2)	2				(0)	7					1					-
infor	culture		Cinan																				
Drácádont culturas	résidu	touro	export	Nodes -	export	export	export	export		export	nodxa												C L
Drócóc	type	o"out	niais		céréale	céréale	céréale	céréale		maïs	cereale												
	ATP ** typ		عَرْ الله	3	Sé	Sé	Ç	, S		Ĕ	8												
	Cultures A		Maïs ensilade	o de la companya de l	do		Trificale				Mais ensilage	Pr fairche Gram	and diam	Pr tauche Gram		Jachère							
*100	בספ	, c	1 Die		1 Orge	1 Blé	1			2 Blé	Mai	ر ب ب		3 Pr 15		4 Jack	+	+			+		

5b) Projet d'épandage et de fertilisation sur l'exploitation

Separation Sep	SCH*	Rendements récoltés	ts récoltés		Exportat	Exportation par les réc	es récoltes		Be	Besoins N	Estima	Estimation de la fourniture par le sol (kg N/ha)	fournit	ure par	le sol (k	g N/ha)	Calcul		Dose à apporter	_	Dose
The color	Cultures	Principal			Z	Q.		K20	de la	a culture							de		rchette) kg N /	ha	prévue
750 q eport 2.5 168	Fourrages	tauche	pature		par ha	-	+	-			Mhs									m	N eff/ha
13,0 M/S export 12, 143 1,0 170 1,10	Blé	75,0 q	export	2,5		1,1	83			+	56		0	0	30			+		73	152
750 q export 2.5 147 1.0 70 1.9 133 2.5 175 35 10 0 0 30 -30 45 130 110 15	Maïs ensilage	13,0 tMS	export	12,5		5,5				H	78		0	20	10					20	98
75.6 q export 2.5 188	Orge	70,0 q	export	2,1	147	1,0	70			-	35		0	0	30	-30				20	130
Marche March Marche Marche March Marche Marche Marche Mar	Slé	75,0 q	export	2,5	188	1,1	83				56		0	0	30	99				73	152
75.0 q export 2.5 188 1.1 83 1.7 128 3.0 225 56 16 0 0 0 0 72 153 173 173 173 173 173 173 173 173 173 17	riticale	65,0 q	export	2,5	163	1,1	72			+	56		0	0	30	-30				17	100
T50 q export 12.6 188 1.1 83 1.7 128 3.0 226 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Slé	75,0 q	export	2,5	188	1,1	83			H	56		0	0	30	-30				73	152
75.0 q export 2.5 188 1,1 83 1,7 128 3,0 225 50 0 0 0 30 -30 50 175 155 195 132 132 132 WS export 12.5 163 5,5 72 12.5 163 14,0 182 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			export					1					+								
75.0 q export 12.5 188 1.1 128 3.0 225 50 0 0 0 0 0 0 175 185 195 195 132 13.0 M/S export 12.5 163 5.5 72 12.5 183 14.0 182 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
130 MNS export 12.5 163 5,5 72 12.5 163 14,0 182 70 0 0 0 0 0 0 0 0	lé	75,0 q	export	2,5	188	1,1	83			+	20		0	0	30	-30				35	170
6 Gram	faïs ensilage	13,0 tMS	export	12,5	163	5,5	72			\vdash	70		0	0	30	-30				22.22	110
6 Gram	Pr fauche Gram	4 0 tMS			80	C C		0.00			Q U		C					-			
1.1. Colored (1.1. Colored (1.	or fairche Gram	SV4 O V			8 6	0, 0		0,00		+	0 5		0	0	0	0 0		+			40
0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0 interdit 10,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0 interdit		O C			8	D, D		0,0			ñ			D	0	0				_	40
0,00 0 0,00 0 0,00 0									-												
8763 3817 7106 5982	achère	0,00		0,0	0	0,0	0	0,0	0			0							interdit		0
8763 3817 7106 5982																					
8763 3817 7106 5982																					
8763 3817 7106 5982																					
			Total	sur SAU	8763	٢	3817	71	106						-	$\frac{1}{1}$	55	382]	

Synthèse et bilans du projet agronomique sur l'exploitation

LE CAM JEAN MICHEL

KERIEN

6) Principales cultures

Surfaces de l'exploitation	SAU
	ha
Céréales	29,6
Colza (oléagineux)	
Pois (protéagineux)	
Maïs grain	
Légumes	
Jachères, vergers	1,0
Maïs ensilage	18,6
Autres fourrages	
Prairies de fauche	4,6
Prairies pâturées	
Total	53,9

Parcours volailles	0,0
Dérobées pâturées	0,0
Autres dérobées	0,0

8) Fertilisation azotée et pression par ha

			Plafond / ha
Azote (kg)	sur SAU	par ha	directive nitrate
N issu d'élevage	5360	99	170
N organique non élevage	0	0	
N minéral (kg N)	3337	62	
N total (kg)	8697	161	1

zote (kg)	sur SAU	par ha	directive nitrate
issu d'élevage	5360	99	170
organique non élevage	Λ	n	

9.1) Comparaison des apports d'N élevage et exports des récoltes

kg d'az	zote N si	ır SAU	ratio Apport / Export
Apports N élevage		5360	61%
Exportations		8763	0170

7.1) Bilan fourrager

,	t MS	Achat	t MS
> Fourrages produits sur l'exploitation	1	- cession	disponibles
Herbe pâturée	0		0
Herbe fauchée	19	-19	0
Maïs ensilage	242		242
Betterave	0		0
Autres fourrages pâturés	0		0
Autres fourrages fauchés	0		0
	260	-19	241

> Substituts de fourrages

to do rourrageo	
Fourr. déshydratés, drèches, coproduits	
Paille aliment	
Total ressources en fourrages	241

>> Besoins du troupeau	UGB	tMS/UGB	Besoin
Vaches laitières	0	6,2	0
Autres bovins	0	6,2	0
Autres herbivores	0	6,2	0
Total beso	oins en to	le MS	0

Bilan	Ressources - Besoins (t MS)	241
Ta	aux de couverture des besoins	

7.2) Gestion du pâturage

Surfaces pâturées	0,0 ha équiv.
Fourrages pâturés	0 t de MS
Seuil critique	0 UGB.JPP/ha
Pression de pâturage	0 UGB.JPP/ha

9.2) Balance globale de fertilisation azotée sur l'exploitation (BGA)

kg d'azote N	sur SAU	par ha
Apports d'azote	8697	161,4
dont restitution au pâturage	0	0,0
dont épandage N organique	5360	99,5
dont fertilisation minérale	3337	61,9
Exportation par les récoltes	8763	162,6
Solde BGA (apport-export)	-65	-1,2
Solde BGA hors légumineuses *	-65	-1,2

	To
Plafond / ha	
en vigueur	

Apport/Export 94%

* Légumineuses à soldes négatifs 0,0 ha otal des soldes négatifs 0 kg N

10) Apports de phosphore et balance globale en phosphore

kg de P2O5	sur SAU	par ha
Apports de phosphore	3573	66,3
dont Restitutions pâturage	0	0,0
Epandage P organique	3573	66,3
Fertilisation minérale	0	0,0
Exportation par les récoltes	3817	70,8
Solde de la balance phosphore (apport-export)	-244	-4,5

		riaionu
sur SRD	par ha	en vigueur
3573	71,0	95

11) Apports de potassium par les épandages et exportations par les cultures

	sur SAU	par h
Apports de K2O par les épandages organiques	5635	105
Exportations par les cultures	7106	132

Informations complémentaires :

4. Localisation

Le projet se situe au lieu-dit Crec'h Quenez Braz sur la commune de KERIEN dans le département des Côtes d'Armor en Région Bretagne.

Le tableau ci-après présente les parcelles concernées.

I M2 EMPRISE DU PROJET SUR LA PARCELLE EN M2	
DE PARCELLE SUPERFICIE DE LA PARCELLE EN M2	21865
NUMERO D	719 et 720
E SECTION DE LA PARCELLE	В
CODE POSTAL PREFIXE DE LA PARCELLE	0
CODE POSTAL	22480
COMMUNE D'IMPLANTATION C	KERIEN

5. Activités

Le tableau ci-après synthétise le classement au titre des Installations Classées pour la Protection de l'Environnement de Monsieur LE CAM Jean-Michel.

Rubrique	Dénomination	Seuil	Situation de l'élevage	Régime ICPE
2111 - 1	Elevage dont l'effectif est compris entre 30 001 et 40 000 emplacements volailles	Entre 30 001 et 40 000 emplacements volailles	40 000 emplacements	Enregistrement

Tableau 23 : Classement de Monsieur LE CAM Jean-Michel dans la nomenclature des ICPE

Monsieur LE CAM Jean-Michel est actuellement autorisé à exploiter un élevage de 40 000 emplacements et a pour projet d'augmenter ses effectifs de poulets lourds à 40 000 emplacements (contre 38 060 emplacements actuellement).

6. Incidences

Description des incidences notables qu'il est susceptible d'avoir sur l'environnement, en fournissant les informations demandées à l'annexe II. A de la directive 2011/92/ UE du Parlement européen et du Conseil du 13 décembre 2011 concernant l'évaluation des incidences de certains projets publics et privés sur l'environnement

- 1. Une description du projet, y compris en particulier :
- a) une description des caractéristiques physiques de l'ensemble du projet et, le cas échéant, des travaux de démolition ;
- b) une description de la localisation du projet, en accordant une attention particulière à la sensibilité environnementale des zones géographiques susceptibles d'être affectées.
- 2. Une description des éléments de l'environnement susceptibles d'être affectés de manière notable par le projet.
- 3. Une description de tous les effets notables, dans la mesure des informations disponibles sur ces effets, que le projet est susceptible d'avoir sur l'environnement résultant :
- a) des résidus et des émissions attendus ainsi que de la production de déchets, le cas échéant ;
- b) de l'utilisation des ressources naturelles, en particulier le sol, les terres, l'eau et la biodiversité.
- **4.** Il est tenu compte des critères de l'annexe III, le cas échéant, lors de la compilation des informations conformément aux points 1 à 3.»

Description des incidences notables qu'il est susceptible d'avoir sur l'environnement

_

1. Description du projet

Monsieur LE CAM Jean-Michel est autorisé en date du 6 novembre 2018 à exploiter un élevage de 40 000 emplacements volaille de chair dans un poulailler de 2 100 m² sur le site Cre'ch Quenez Braz sur la commune de KERIEN. Il élève également 11 génisses de plus de 2 ans à l'engraissement.

Actuellement, le fumier est géré comme ceci :

- 5 248 kg N de fumier de volaille épandu sur terres en propre
- 2 916 kg N de fumier de volaille exporté avec la société SAS Terrial
- 594 kg N de fumier de bovin épandu sur terres en propre

Le projet de Monsieur LE CAM Jean-Michel est d'arrêter l'atelier bovin, d'augmenter les effectifs de poulets lourds de 38 060 à 40 000 emplacements et d'arrêter l'exportation avec la société SAS Terrial pour mettre en place du compostage et revendre le compost à des agriculteurs locaux.

Le parcellaire ayant évolué depuis le dernier arrêté d'autorisation, le plan d'épandage est mis à jour dans le cadre de ce projet.

Le projet n'engendre aucune construction de bâtiment. Le compostage se fera dans une fumière de 320 m² situé sur l'ancien site d'élevage bovin. Le dimensionnement est présenté ultérieurement dans ce dossier.

2. Localisation du projet et éléments de l'environnement susceptibles d'être affectés

Le projet se situe-t-il dans :	Localisation du site dans cette zone	Si oui, laquelle ?
ZNIEFF I ou II	Non	1
Zone de montagne	Non	1
Zone couverte par un arrêté biotope	Non	1
Commune littorale	Non	1
Parc national, parc naturel marin, réserve naturelle, zone de conservation halieutique ou parc naturel régional	Non	1

Territoire couvert par un plan de prévention du bruit	Non	/
Bien inscrit au patrimoine mondial ou sa zone tampon, un monument historique ou ses abords ou un site patrimonial remarquable	Non	/
Zone humide ayant fait l'objet d'une délimitation	Non	1
Commune couverte par un plan de prévention des risques naturels prévisibles (PPRN) ou un plan de prévention des risques technologiques (PPRT)	Non	/
Site ou sols pollués	Non	1
Zone de répartition des eaux	Non	
Périmètre de protection rapprochée d'un captage d'eau destiné à la consommation humaine ou d'eau minérale naturelle	Non	/
Site inscrit	Non	1

Le projet se situe-t-il dans ou à proximité de :	Localisation du site dans cette zone	Si oui, laquelle ?
Site Natura 2000	Non	La zone Natura 2000 la plus proche du site est "Têtes de bassin du Blavet et de l'Hyères" (Fiche FR5300007) située à 1,9 km à l'Ouest du site.
Site classé	Non	1

3. Description des effets notables

Incidence pote	entielle de l'installation	Installation concernée ?	Si oui, nature et importance de l'effet
Ressources	Engendre-t-il des prélèvements en eau ? Si oui dans quel milieu ?	Oui	Le projet engendre un prélèvement d'eau dans un puits de surface. Un système de disconnexion permet de prélever de l'eau à partir du réseau public en cas de débit trop faible dans le puits. L'eau est utilisée pour l'abreuvement des animaux et pour le lavage du poulailler lors du vide sanitaire. Les volumes passeront de 2 412 m3 (11,3 litres d'eau par poulet, 5,5 lots par an et 47 m3 d'eau de lavage) à 2 533 m3 par an.
	Impliquera-t-il des drainages / ou des modifications prévisibles des masses d'eau souterraines ?	Non	1
	Est-il excédentaire en matériaux ?	Non	Aucune construction ou démolition ne sera effectuée.
	Est-il déficitaire en matériaux ? Si oui, utilise-t-il les ressources naturelles du sol ou du sous-sol ?	Non	Aucune construction ou démolition ne sera effectuée.
Milieu naturel	Est-il susceptible d'entraîner des perturbations, des	Non	Le poulailler étant existant et le projet n'engendrant pas de construction ni de

dégradations, des destructions de la biodiversité existante : faune, flore, habitats, continuités écologiques ?		démolition, le projet n'engendrera pas de perturbations, dégradations ou de destructions de biodiversité existante.
Si le projet est		
situé dans ou à		
proximité d'un site		
Natura 2000, est-il		
susceptible d'avoir		
un impact sur un	Non concerné	/
habitat / une		
espèce inscrit(e)		
au Formulaire		
Standard de		
Données du site?		
Est-il susceptible		
d'avoir des		Le site étant éloigné
incidences sur les		des différentes zones énumérées précédemment, le
autres zones à	Non	
sensibilité		projet n'aura pas d'incidences sur celles-
particulière		Ci.
présentées dans le paragraphe 1 ?		
Engendre-t-il la		Le projet n'engendre pas de construction ou
consommation		d'artificialisation du sol.
d'espaces	Non	Le nombre d'animaux élevés va légèrement
naturels,	Non	augmenter (concernant
agricoles,		le poulet lourd, sinon l'éleveur est déjà
forestiers,		autorisé à élever 40 000 volailles par lot) mais le

	maritimes ?		poulailler est suffisamment dimensionné pour accueillir les poulets lourds supplémentaires.
	Est-il concerné par des risques technologiques ?	Non	/
Risques	Est-il concerné par des risques naturels ?	Non	Le risque sismique sur la commune de KERIEN est de 2 sur une échelle de 5, c'est-à-dire faible. Le potentiel radon est de 3 en raison de la présence naturelle d'uranium dans le Massif Armoricain.
	Engendre-t-il des risques sanitaires ? Est-il concerné par des risques sanitaires ?	Oui	Le site est sous protection sanitaire. Cela signifie que pour y pénétrer, il faut avoir l'autorisation de l'exploitant et respecter toutes les règles sanitaires comme le port d'une cote et de pédisacs, le lavage des mains, le stockage des cadavres hors du site
Nuisances	Engendre-t-il des déplacements/des trafics ?	Oui	Les trafics concernent les camions de livraison d'aliments, les véhicules de société d'équarrissage, les camions de chargement et déchargement des animaux.
	Est-il source de bruit ? Est-il concerné par des nuisances sonores ?	Oui	Les nuisances sonores proviennent principalement des ventilateurs et turbines d'extraction d'air et des passages de véhicules lourds.

			En revanche, le site est isolé de toute habitation.
	Engendre-t-il des odeurs ? Est-il concerné par des nuisances olfactives ?	Oui	Les odeurs proviennent principalement des extractions d'air composées principalement d'ammoniac ainsi que des déjections lors du curage du poulailler pendant le vide sanitaire. Le poulailler se situe à plus de 100 m des tiers, ainsi l'impact sera limité.
	Engendre-t-il des vibrations ? Est-il concerné par des vibrations ?	Non	/
	Engendre-t-il des émissions lumineuses? Est-il concerné par des émissions lumineuses ?	Non	1
Emissions	Engendre-t-il des rejets dans l'air ?	Oui	L'élevage de poulets lourds émet principalement de l'ammoniac et également d'autres gaz dans l'air, par l'extraction d'air du bâtiment, le stockage des effluents et leur épandage. Les rejets estimés à partir de l'outil GEREP sont les suivants :
			3 779 kg NH3/an, 84 kg N2O/an, 170 kg

			CH4/an, 1 547 kg TSP/an et 774 kg PM10/an.
	Engendre-t-il des rejets liquides ? Si oui, dans quel milieu ?	Oui	Les rejets liquides proviennent des eaux de lavage du poulailler. Celui-ci est lavé à chaque fin de lot, soit environ tous les 2 mois. Ces eaux sont récupérées dans une cuve de 5m3 attenante au poulailler pour être ensuite épandues sur les terres en propre de Monsieur LE CAM Jean-Michel conformément aux règles d'épandage.
	Engendre-t-il des d'effluents ?	Oui	Les poulets, par leurs déjections mélangées à de la litière, vont produire du fumier qui sera évacué en fin de lot soit vers une parcelle pour y être stocké sous une bâche avant épandage sur terres en propre, soit composté par retournement puis vendu à des agriculteurs locaux. Afin de limiter les émanations d'odeur, le compostage se fera à plus de 100 m des tiers dans une fumière couverte.
Déchets	Engendre-t-il la production de déchets non dangereux, inertes, dangereux ?	Oui	Les ordures ménagères et les déchets de la collecte sélective seront évacués vers la déchetterie de BOURBRIAC. Les déchets vétérinaires seront

			repris par le vétérinaire du groupement Gaevol. Les cadavres d'animaux seront stockés dans un congélateur en attendant d'être repris par la SecAnim de PLOUVARA.
Patrimoine/ Cadre de vie/ Population	Est-il susceptible de porter atteinte au patrimoine architectural, culturel, archéologique et paysager ?	Non	Le site est situé à plus de 500 m d'un ouvrage classé aux Monuments Historiques. L'élevage est situé dans une zone isolée. De plus, celui-ci est existant et la faible augmentation des effectifs (qui ne concerne que les poulets lourds) n'engendrera pas de construction supplémentaire.
	Engendre-t-il des modifications sur les activités humaines (agriculture, sylviculture, urbanisme, aménagements) notamment l'usage des sols ?	Non	Les terres cultivées font déjà l'objet d'un épandage avec du fumier de poulets lourds. Le fumier supplémentaire produit sera composté et vendu à des agriculteurs locaux.

Notons que les incidences du projet ne sont pas susceptibles d'être cumulées avec d'autres projets existants ou approuvés ni d'avoir des effets de nature transfrontalière.

7. Autres pièces

1. Capacités techniques et financières

Le chef d'exploitation Monsieur LE CAM Jean-Michel est agriculteur depuis de nombreuses années et bénéficie d'un accompagnement d'un technicien du groupement Gaevol.

La mise à jour des effectifs ne posera pas de problème pour l'exploitant.

Le projet n'engendre pas d'investissements supplémentaires, le poulailler étant suffisamment dimensionné et l'éleveur disposant d'une fumière pour réaliser son compostage.

2. Compatibilité du projet avec les plans, schémas et programmes

2.1. Compatibilité avec le SDAGE Loire-Bretagne

Le comité de bassin a adopté le 3 mars 2022 le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) pour les années 2022 à 2027 et il a émis un avis favorable sur le programme de mesures correspondant. L'arrêté du préfet coordonnateur de bassin en date du 18 mars 2022 approuve le SDAGE et arrête le programme de mesures. Le SDAGE Loire-Bretagne entre en vigueur le 4 avril 2022.

Qu'est-ce que le SDAGE ? :

Le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) est un document de planification concertée qui décrit les priorités de la politique de l'eau pour le bassin hydrographique et les objectifs.

- Il définit les orientations fondamentales d'une gestion équilibrée et durable de la ressource en eau.
- Il fixe les objectifs de qualité et de quantité à atteindre pour chaque cours d'eau, plan d'eau, nappe souterraine, estuaire et secteur littoral.
- Il détermine les dispositions nécessaires pour prévenir la détérioration et assurer l'amélioration de l'état des eaux et des milieux aquatiques.

Le SDAGE est complété par un programme de mesures qui précise, secteur par secteur, les actions techniques, financières, réglementaires, à conduire d'ici 2027 pour atteindre les objectifs fixés. Sur le terrain, c'est la combinaison des dispositions et des mesures qui permettra d'atteindre les objectifs.

Aujourd'hui, 24 % des eaux sont en bon état et 10 % s'en approchent. C'est pourquoi l'objectif de 61 % des eaux, déjà énoncé en 2016, est maintenu. C'est un objectif ambitieux qui nécessite que chacun des acteurs se mobilise :

- l'État à travers ses missions de coordination, de programmation et de police des eaux,
- les élus gestionnaires des collectivités et des établissements publics locaux, auxquels les lois de décentralisation confèrent un large pouvoir de décision,
- les divers usagers et leurs groupements, socio-professionnels et associatifs,
- et les citoyens car les gestes au quotidien de chacun d'entre nous conditionnent la réussite des politiques environnementales.

Le SDAGE 2022-2027 s'inscrit dans la continuité du SDAGE 2016-2021 pour permettre aux acteurs du bassin Loire-Bretagne de poursuivre les efforts et les actions entreprises.

Quelles priorités pour le bon état des eaux ?

Le SDAGE répond à 4 questions importantes :

- Qualité des eaux : que faire pour garantir des eaux de qualité pour la santé des hommes, la vie des milieux aquatiques et les différents usages, aujourd'hui, demain et pour les générations futures ?
- Milieux aquatiques : comment préserver et restaurer des milieux aquatiques vivants et diversifiés, des sources à la mer ?
- Quantité disponible : comment partager la ressource disponible et réguler ses usages
 ? Comment adapter les activités humaines et les territoires aux inondations et aux sécheresses ?
- Organisation et gestion : comment s'organiser ensemble pour gérer ainsi l'eau et les milieux aquatiques dans les territoires, en cohérence avec les autres politiques publiques ? Comment mobiliser nos moyens de façon cohérente, équitable et efficiente ?

Les réponses à ces questions sont organisées au sein de 14 chapitres qui définissent les grandes orientations et des dispositions à caractère juridique pour la gestion de l'eau :

Les Orientations du SDAGE 2022-2027	Les Dispositions	Exemples d'Actions
Repenser les aménagements de cours d'eau	Les modifications physiques des cours d'eau perturbent le milieu aquatique et entraînent une dégradation de son état.	Exemples d'actions : améliorer la connaissance, favoriser la prise de conscience des maîtres d'ouvrage et des habitants, préserver et restaurer le caractère naturel des cours d'eau, prévenir toute nouvelle dégradation.

Réduire la pollution par les nitrates.	Les nitrates ont des effets négatifs sur la santé humaine et le milieu naturel.	Exemples d'actions : respecter l'équilibre de la fertilisation des sols, réduire le risque de transfert des nitrates vers les eaux.
Réduire la pollution organique et bactériologique.	Les rejets de pollution organique sont susceptibles d'altérer la qualité biologique des milieux ou d'entraver certains usages.	Exemples d'actions : restaurer la dynamique des rivières, réduire les flux de pollutions de toutes origines à l'échelle du bassin versant.
Maîtriser et réduire la pollution par les pesticides.	Tous les pesticides sont toxiques au- delà d'un certain seuil. Leur maîtrise est un enjeu de santé publique et d'environnement.	Exemples d'actions : limiter l'utilisation de pesticides, limiter leur transfert vers les eaux.
Maîtriser et réduire les pollutions dues aux micropolluants	Leur rejet peut avoir des conséquences sur l'environnement et la santé humaine, avec une modification des fonctions physiologiques, nerveuses et de reproduction.	Exemples d'actions : favoriser un traitement à la source, réduire voire supprimer les rejets de ces substances.
Protéger la santé en protégeant la ressource en eau.	Une eau impropre à la consommation peut avoir des conséquences négatives sur la santé. Elle peut aussi avoir un impact en cas d'ingestion lors de baignades, par contact cutané ou par inhalation.	Exemples d'actions: mettre en place les périmètres de protection sur tous les captages pour l'eau potable, préserver pour l'alimentation en eau potable des ressources bien protégées naturellement.
Maîtriser les prélèvements d'eau.	Certains écosystèmes sont rendus vulnérables par les déséquilibres entre la ressource disponible et les prélèvements. Ces déséquilibres sont particulièrement mis en évidence lors des périodes de sécheresse.	Exemples d'actions : adapter les volumes de prélèvements autorisés à la ressource disponible, mieux anticiper et gérer les situations de crise.
Préserver et restaurer les zones humides.	Elles jouent un rôle fondamental pour l'interception des pollutions diffuses, la régulation des débits des cours d'eau ou la conservation de la biodiversité.	Exemples d'actions : faire l'inventaire des zones humides, préserver les zones en bon état, restaurer les zones endommagées.
Préserver la biodiversité aquatique.	La richesse de la biodiversité aquatique est un indicateur du bon état des milieux. Le changement climatique pourrait modifier les aires de répartition et le comportement des espèces.	Exemples d'actions : préserver les habitats, restaurer la continuité écologique, lutter contre les espèces envahissantes.
Préserver le littoral.	Le littoral Loire-Bretagne représente 40 % du littoral de la France continentale. Situé à l'aval des bassins versants et réceptacle de toutes les pollutions, il doit concilier activités économiques et maintien d'un bon état des milieux et des usages sensibles.	Exemples d'actions : protéger les écosystèmes littoraux et en améliorer la connaissance, encadrer les extractions de matériaux marins, améliorer et préserver la qualité des eaux.
Préserver les têtes de bassin versant.	Ce sont des lieux privilégiés dans le processus d'épuration de l'eau, de régulation des régimes hydrologiques et elles offrent des habitats pour de nombreuses espèces. Elles sont très sensibles et fragiles aux dégradations.	Exemples d'actions : développer la cohésion et la solidarité entre les différents acteurs, sensibiliser les habitants et les acteurs au rôle des têtes de bassin, inventorier et analyser systématiquement ces secteurs.
Faciliter la gouvernance locale et renforcer la cohérence des territoires et des politiques publiques	La gestion de la ressource en eau ne peut se concevoir qu'à l'échelle du bassin versant. Cette gouvernance est également pertinente pour faire face aux enjeux liés au changement climatique.	Exemples d'actions : améliorer la coordination stratégique et technique des structures de gouvernance, agir à l'échelle du bassin versant.

Mettre en place des outils réglementaires et financiers.	La directive cadre européenne sur l'eau énonce le principe de transparence des moyens financiers face aux usagers. La loi sur l'eau et les milieux aquatiques renforce le principe « pollueur-payeur ».	Exemples d'actions : mieux coordonner l'action réglementaire de l'État et l'action financière de l'agence de l'eau.
Informer, sensibiliser, favoriser les échanges.	La directive cadre européenne et la Charte de l'environnement adossée à la Constitution française mettent en avant le principe d'information et de consultation des citoyens.	Exemples d'actions : améliorer l'accès à l'information, favoriser la prise de conscience, mobiliser les acteurs.

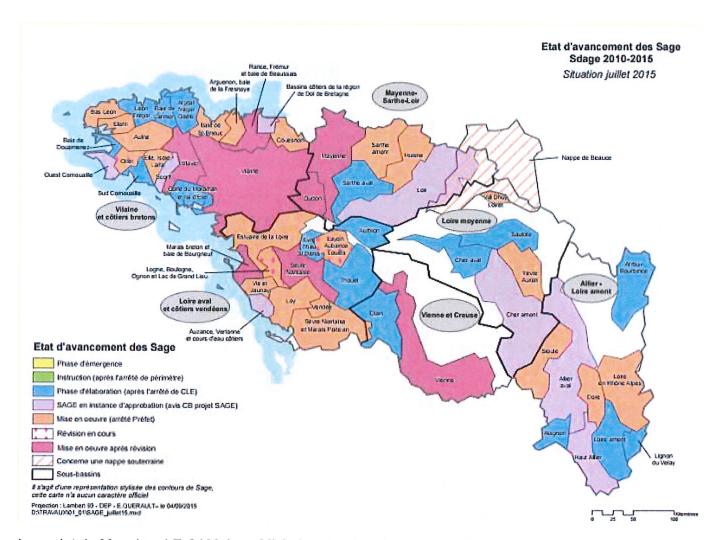
Tableau 24 : Orientations du SDAGE pour la période 2022-2027

Le projet de Monsieur LE CAM Jean-Michel sera en phase avec les orientations définies par le SDAGE Loire-Bretagne sur la période 2022-2027.

En effet, bien que la quantité d'effluents produits augmente, il n'y aura pas davantage d'épandages sur les terres de Monsieur LE CAM Jean-Michel. Le surplus sera composté pour être revendu à des agriculteurs locaux et ainsi limiter l'usage d'engrais minéraux. De plus, l'éleveur arrête son atelier bovin.

Durant l'épandage, l'équilibre de la fertilisation sera respecté. De par son expérience, l'éleveur Jean-Michel LE CAM est à même d'optimiser ses pratiques afin de limiter son impact sur l'environnement et favoriser le bon développement de ses cultures.

L'éleveur vient quotidiennement à son élevage et peut détecter s'il y a des fuites d'eau dans son bâtiment grâce à un système de contrôle et ainsi intervenir rapidement.


2.2. Compatibilité avec le SAGE Blavet

Les Schémas d'Aménagement et de Gestion des Eaux (SAGE) sont l'application locale des SDAGE. Ils constituent un outil indispensable à la mise en œuvre du SDAGE en déclinant concrètement certaines orientations et dispositions, en les adaptant aux contextes locaux et en les complétant si cela s'avère nécessaire.

Tous les cours d'eau de Bretagne sont couverts par un SAGE.

La révision a pour but d'actualiser les objectifs en fonction des actions déjà réalisées et des nouveaux enjeux du bassin, compatibles avec le nouveau SAGE, et d'être en conformité avec les dispositions de la loi sur l'eau de 2006.

La carte ci-dessous nous montre l'état d'avancement des SAGE sur le bassin Loire-Bretagne.

Le projet de Monsieur LE CAM Jean-Michel rentre dans le cadre du SAGE Blavet.

Celui-ci a été approuvé par arrêté préfectoral le 15 avril 2014 et couvre 103 communes des Côtes d'Armor et du Morbihan sur près de 2 140 km².

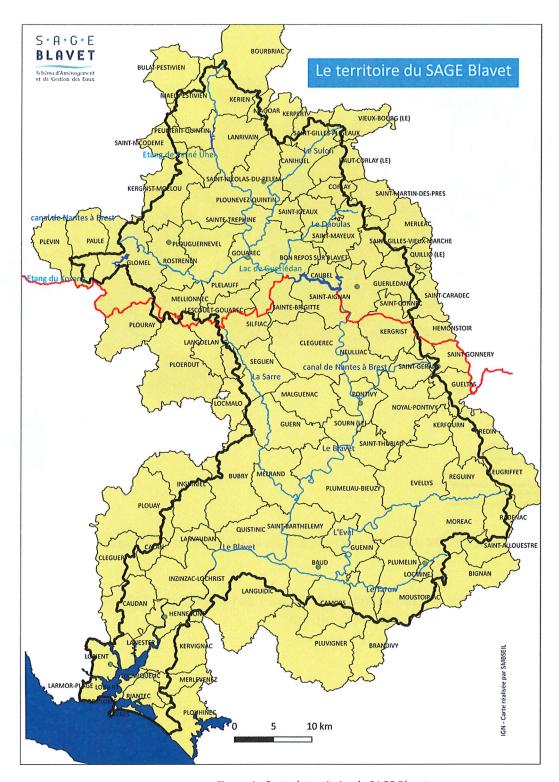


Figure 4 : Carte du territoire du SAGE Blavet

Les enjeux du SAGE sont multiples :

- Co-construction d'un développement durable pour une gestion équilibrée de la ressource en eau : concilier le thème de l'eau avec les thèmes de l'urbanisme, de l'agriculture et du développement économique dont le tourisme
- Restauration de la qualité de l'eau à travers la réduction des flux d'azote et de phosphore, la réduction des pesticides et des pollutions dues à l'assainissement

- Protection et restauration des milieux aquatiques à travers la protection, la gestion et la restauration des zones humides et des cours d'eau
- Gestion quantitative optimale de la ressource : protection contre les inondations et gestion de l'étiage et partage de la ressource

Le projet de Monsieur LE CAM Jean-Michel est en phase avec ces enjeux. En effet, il y aura peu d'augmentation de la production d'azote de l'élevage avicole. De plus, le surplus non épandu sur les terres en propre sera composté pour être revendu à des agriculteurs locaux. Les pratiques d'épandage se feront en respectant les distances réglementaires vis-à-vis des cours d'eau et aucune zone humide ne sera dégradée par le projet.

2.3. Compatibilité avec le SRC (Schéma Régional des Carrières)

Le projet de Monsieur LE CAM Jean-Michel n'est pas lié à l'exploitation d'une carrière. Il n'est donc pas concerné par les mesures du Schéma Régional des Carrières.

2.4. Compatibilité avec le PNPD (Plan National de Prévention des Déchets)

Monsieur LE CAM Jean-Michel veille aujourd'hui à la réduction de la production de déchets sur son site d'élevage. Nous avons pu voir précédemment qu'une filière de reprise ou de recyclage est déjà en place pour les différents déchets produits sur l'exploitation.

L'augmentation des effectifs aura peu d'impact sur la production des déchets car :

- les aliments sont livrés en vrac et ne disposent donc pas d'emballage
- le fumier étant considéré comme un coproduit n'engendre pas d'augmentation de la quantité de déchets
- les déchets de soin se font rare dans la mesure où l'élevage respecte les règles sanitaires. Ceux-ci sont repris par le vétérinaire qui les envoie ensuite vers des structures agréées.

Aucun brûlage à l'air libre n'est réalisé.

2.5. Compatibilité avec le plan national de prévention et de gestion de certaines catégories de déchets

Monsieur LE CAM Jean-Michel n'est pas concerné par ce plan.

2.6. Compatibilité avec le plan régional de prévention et de gestion des déchets

Tout comme pour le plan national de prévention des déchets, Monsieur LE CAM Jean-Michel respecte les dispositions prévues dans le plan régional de prévention et de gestion des déchets.

Le projet de Monsieur LE CAM Jean-Michel n'engendrant pas de construction ou extension ou démolition, aucun déchet de bâtiment ne sera généré. De plus, comme expliqué précédemment, la principale augmentation concernera le fumier qui n'est pas considéré comme un déchet mais comme un coproduit. Notons que cette augmentation sera très faible du fait de la faible augmentation d'effectifs.

2.7. Compatibilité avec le programme d'actions national et régional pour la protection des eaux contre la pollution par les nitrates d'origine agricole

Le 6è programme d'actions régional directive nitrates est entré en vigueur par arrêté préfectoral le 2 août 2018 puis modifié par arrêtés modificatifs les 18 novembre 2019 et 18 novembre 2021.

Ce programme a pour but de réduire la pollutions des eaux par les nitrates d'origine agricole.

A l'échelle de la France, des « zones vulnérables » ont été définies dans lesquelles la pression azotée ne doit pas excéder 170 kg N / ha de SAU.

La Bretagne est classée intégralement en zone vulnérable.

A l'échelle de la Bretagne, d'autres zones sensibles sont définies : les bassins versants contentieux, bassins versants algues vertes, zones d'actions renforcées...

La commune de KERIEN sur laquelle est implanté Monsieur LE CAM Jean-Michel est classée en zone d'actions renforcées.

Le tableau ci-après nous présente les mesures présentées dans le 6^e programme d'actions directive nitrates et les applications au sein de l'exploitation de Monsieur LE CAM Jean-Michel.

Principes 6 ^e programme	Application sur l'exploitation de Monsieur LE CAM Jean-Michel
Gestion raisonnée de la fertilisation azotée	Réalisation d'un plan prévisionnel de fumure, d'un cahier d'enregistrement des pratiques et de la déclaration de flux d'azote tous les ans
Limitation des quantités d'azote pouvant être épandues	Respect du plafond de 170 kg N / ha de SAU

Calendrier d'interdictions d'épandages	Respect des dates d'interdiction d'épandage afin d'éviter toute pollution
Stockage des effluents d'élevage	Stockage du fumier sur une parcelle couvert d'une bâche géotextile afin d'éviter des rejets dans le milieu naturel. Compostage dans une fumière couverte de 320 m²
Conditions d'épandage	Bon sens dans la réalisation des épandages (pas sur sols détrempés, inondés, pris par le gel), respect des distances d'interdiction d'épandage avec les zones sensibles (tiers, cours d'eau)
Gestion du pâturage	Non concerné
Couverture des sols et gestion adaptée des terres	Sols constamment implantées en culture ou en prairie, préservation des zones humides existantes, maintien des bandes enherbées de 10 m de large le long des cours d'eau

Tableau 25 : application des principes du 6º programme d'actions régional directive nitrates pour Monsieur LE CAM Jean-Michel

8. Plans